Penalaran Siswa SMA dalam Menyelesaikan Soal Non-Routine

Fahrun Nisa’, I Made Sulandra, Abadyo Abadyo

Abstract


Abstract: The purpose of this study is to describe students' reasoning in solving non-routine problems. This study uses descriptive exploratory research with a qualitative approach. This research was conducted on 33 MIPA SMA Laboratory UM students. A subject is taken based on student answers that are complete, correct, from the teacher's recommendations and the results of the analysis that meet five reasoning indicators, namely analysis, synthesis, generalization, justification and resolution of non-routine problems. The results of this study state that the more dominant subject performs the analysis by explaining information, doing the right calculation; then do the synthesis by combining information; generalize by identifying forms; justify by giving reasons as well; solve non-routine problems. Abstrak: Tujuan penelitian ini adalah untuk mendeskripsikan penalaran siswa dalam menyelesaikan soal non-routine. Penelitian ini menggunakan penelitian deskriptif eksploratif dengan pendekatan kualitatif. Penelitian ini dilakukan kepada 33 siswa MIPA SMA Laboratorium UM. Seorang subjek diambil berdasarkan jawaban siswa yang tuntas, benar, dari rekomendasi guru serta hasil analisis yang memenuhi lima indikator penalaran, yaitu analisis, sintesis, generalisasi, justifikasi, dan penyelesaian masalah non-routine. Hasil penelitian ini menyatakan bahwa subjek lebih dominan melakukan analisis dengan menjelaskan informasi, melakukan perhitungan yang benar; kemudian melakukan sintesis dengan menggabungkan informasi; melakukan generalisasi dengan mengidentifikasi bentuk; melakukan justifikasi dengan memberikan alasan; menyelesaikan soal non-routine.

Keywords


reasoning; reasoning indicators; non-routine question; penalaran; indikator penalaran; soal non-routine

Full Text:

PDF

References


Adegoke, B. A. (2013). Modelling the Relationship between Mathematical Reasoning Ability and Mathematics Attainment.

Journal of Education and Practice, 4, 1-9.

Bergqvist, T., Lithner, J., & Sumpter, L. (2008). Upper Secondary Students’ Task Reasoning. International Journal of

Mathematical Education in Science and Technology, 39(1), 1–12.

Carlson, M. P., & Bloom, I. (2005). The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving

Framework. Educational Studies in Mathematics, 58, 45–75.

Elia, I., Panhuizen, M., & Kolovou, A. (2009). Exploring Strategy Use and Strategy Flexibility in Non-Routine Problem

Solving By Primary School High Achievers In Mathematics. ZDM, 41(5), 605–618.

Gunhan, B. C. (2014). A Case Study on The Investigation of Reasoning Skills in Geometry. South African Journal of

Education, 34, 19.

Hidayati, A., & Widodo, S. (2015). Proses Penalaran Matematis Siswa dalam Memecahkan Masalah Matematika pada Materi

Pokok Dimensi Tiga Berdasarkan Kemampuan Siswa di SMA Negeri 5 Kediri. Jurnal Math Educator Nusantara,

(02), 131–143.

Kalukar, E. (2014). Profil Penalaran Siswa SMA dalam Memecahkan Masalah Matematika Dilihat dari Perbedaan Gaya

Kognitif Filed Indipendent dan Field Dependent. Tesis tidak diterbitkan. Universitas Negeri Surabaya, Surabaya.

Lee, C.Y., & Chen, M. P. (2009). A Computer Game as a Context for Non-Routine Mathematical Problem Solving: The

Effects of Type of Question Prompt and Level of Prior Knowledge. Computers & Education, 52(3), 530–542.

Lithner, J. (2012). Learning Mathematics by Creative or Imitative Reasoning. International Congress on Mathematical

Education (ICME), 12, 18.

Mullis, I. V. S. (Ed.). (2012). TIMSS 2011. International Results in Mathematics. Chestnut Hill, Mass: TIMSS & PIRLS

Internat. Study Center.

NCTM. (2000). Principles and Standards for School Mathematics. Reston: The National Council of Teachers of Mathematics, Inc.

Pantziara, M., Gagatsis, A., & Elia, I. (2009). Using Diagrams as Tools for the Solution of Non-Routine Mathematical

Problems. Educational Studies in Mathematics, 72(1), 39–60.

Rizta, A., Zulkardi, & Hartono, Y. (2013). Pengembangan Soal Penalaran Model TIMSS Matematika SMP. Jurnal Penelitian

an Evaluasi Pendidikan, 2, 230–240.

Siskawati, F. (2014). Penalaran Siswa SMP dalam Memecahkan Masalah Matematika Ditinjau dari Perbedaan Kepribadian

Extrovert dan Introvert. Tesis tidak diterbitkan. Universitas Negeri Surabaya, Surabaya.

Stylianides, G. J. (2008). An Analytic Framework of Reasoning. FLM Publishing Association, 28 (1), 9–16.

Wardhani, D. A. (2016). Penalaran Analogi Siswa Kelas VIII SMP dalam Menyelesaikan Masalah Luas dan Keliling Segitiga

dan Segiempat. Tesis tidak diterbitkan. Universitas Negeri Malang, Malang.




DOI: http://dx.doi.org/10.17977/jptpp.v4i11.13038

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Fahrun Nisa’, I Made Sulandra, Abadyo Abadyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JPtpp is accredited “Rank 2” as a scientific journal under the decree of the Directorate General of Research Enhancement and Development, Ministry of Research, Technology, and Higher Education, dated October 24, 2018, No: 30/E/KPT/2018, effective for five years from Volume 3 Issue 1, 2018 until Volume 7 Issue 8, 2022.


Jurnal Pendidikan: Teori, Penelitian, & Pengembangan

Journal Of Education

Graduate School Of Universitas Negeri Malang

Lisensi Creative Commons

JPtpp is licensed under Creative Commons Attribution-ShareAlike 4.0 International License