Proses Penalaran Analogi Siswa Impulsif Dalam Memecahkan Masalah Bangun Ruang Sisi Lengkung

Diyah Ayu Rizki Pradita, Dwiyana Dwiyana, Sisworo Sisworo

Abstract


Abstract: The aim of the study was to describe the process of reasoning analogy of students impulsive in solving problems in constructing build arches. This type of research is a qualitative descriptive study using Sternberg's stage. The subjects in this study were three students of class X. The instruments used were MFFT, TKM, TPABRSL, and interview guidelines. The results of indicate that impulsive students are highly capable and are able to pass the encoding and inferring stages. However, students who are capable are not doing the mapping and applying stages correctly. Whereas low-ability impulsive students cannot pass all stages. Abstrak: Tujuan penelitian adalah menggambarkan proses penalaran analogi siswa impulsif dalam memecahkan masalah bangun ruang sisi lengkung. Jenis penelitian ini merupakan penelitian deskriptif kualitatif dengan menggunakan tahapan penalaran analogi menurut Sternberg. Subjek dalam penelitian ini adalah tiga siswa kelas X. Instrumen yang digunakan adalah tes MFFT, tes kemampuan matematika, tes penalaran analogi bangun ruang sisi lengkung (TPABRSL) dan pedoman wawancara. Hasil dari TPABRSL menunjukkan bahwa siswa impulsif berkemampuan tinggi dan sedang mampu melewati tahap encoding dan inferring. Akan tetapi, siswa berkemampuan sedang tidak melakukan tahap mapping dan tahap applying dengan benar, sedangkan siswa impulsif berkemampuan rendah tidak mampu melewati seluruh tahapan.

Keywords


analogy reasoning; impulsive students; build curved side spaces; penalaran analogi; siswa impulsif; bangun ruang sisi lengkung

Full Text:

PDF

References


BSNP. (2008). Pedoman Penyusuna Kurikulum Tingkat Satuan Pendidikan Jenjang Sekolah Dasar. Jakarta: BSNP.

Callejo, M. L., & Vila, A. (2009). Approach to Mathematical Problem Solving and Students’ Belief Systems: Two Case Studies. Educational Studies in Mathematics, 72(1), 111–126. https://doi.org/10.1007/s10649-009-9195-z

Chrysostomou, M., Pitta-Pantazi, D., Tsingi, C., Cleanthous, E., & Christou, C. (2013). Examining Number Sense and Algebraic Reasoning Through Cognitive Styles. Educational Studies in Mathematics, 83(2), 205–223. https://doi.org/10.1007/s10649-012-9448-0

Herbert, S. (2009). Professional Learning in Mathematical Reasoning: Reflections of a Primary Teacher. Dalam W. Widjaja, L. A. Bragg, & Esther (Ed.), Proceddings of the 39th Conferrence of the Mathematics Education Research Group of australasia (hlm. 279–286). Deakin University.

Lailiyah, S., Nusantara, T., Sadijah, C., & Irawan, E. B. (2017). Developing Student Analogical Reasoning Through Algebraic Problems. Jurnal Pendidikan Sains, 5(2), 38–45.

Lee, K.-H., & Sriraman, B. (2011). Conjecturing Via Reconceived Classical Analogy. Educational Studies in Mathematics, 76(2), 123–140. https://doi.org/10.1007/s10649-010-9274-1

Mason, L. (1994). Cognitive and Metacognitive Aspects in Conceptual Change by Analogy. Instructional Science, 22, 157–187.

Mikrayanti. (2012). Meningkatkan Kemampuan Penalaran dan Komunikasi Matematis Siswa Menengan Atas melalui Pembelajaran Berbasis Masalah (Studi Kuasi Eksperimen pada Siswa SMA di Kabupaten Bima. Tesis tidak diterbitkan. Universitas Pendidikan Indonesia, Bandung.

Mofidi, S. A., Amiripour, P., & Zadeh, M. H. B. (2012). Instruction of Mathematical Concept Through Analogical Reasoning Skills. Indian Journal of Science and Technology, 5(6), 2916–2922.

Moleong, L. J. (2011). Metode Penelitian Kualitatif. Bandung: PT. Remaja Rosdakarya.

National Council of Teachers of Mathematics (Ed.). (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.

Ozerem, A. (2012). Misconceptions in Geometry and Suggested Solutions for Seventh Grade Student. International Journal of New Trends in Arts, 1(4), 23–35.

Pang, Alawyn, W.-K., & Dindyal, J. (2009). Analogical Reasoning Errors in Mathematics at Junior College Level. Proceedings of the 32nd Annual Conference of the Mathematics Education Research Group of Australasia, 1, 1–8. Nanyang Technological University.

PISA. (2015). Results: What Student Know and Can Do Student Performance in Mathematics, Reading and Science.

Rahman. (2018). Analisis Hasil Belajar Matematika Berdasarkan Perbedaan Gaya Kognitif secara Psikologis dan Konseptual Tempo pada Siswa Kelas X SMA Negeri 3 Makasar. Jurnal Pendidikan dan Kebudayaan, 14(72).

Romadlona, A. F., Parta, I. N., & Dwiyana. (2018). Penalaran Analogi Siswa Reflektif Kelas X dalam Menyelesaikan Soal Trigonometri. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 3(1), 1–8.

Rozencwajg, P. (2003). Metacognitive Factors in Scientific Problem Solving Strategies. European Journal of Psychology of Education, 3(18), 281–294.

Rozencwajg, P., & Corroyer, D. (2005). Cognitive Processes in the Reflective-Impulsive Cognitive Style. The Journal of Genetic Psychology, 166(4), 451–463.




DOI: http://dx.doi.org/10.17977/jptpp.v4i12.13057

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Diyah Ayu Rizki Pradita, Dwiyana Dwiyana, Sisworo Sisworo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JPtpp is accredited “Rank 2” as a scientific journal under the decree of the Directorate General of Research Enhancement and Development, Ministry of Research, Technology, and Higher Education, dated October 24, 2018, No: 30/E/KPT/2018, effective for five years from Volume 3 Issue 1, 2018 until Volume 7 Issue 8, 2022.


Jurnal Pendidikan: Teori, Penelitian, & Pengembangan

Journal Of Education

Graduate School Of Universitas Negeri Malang

Lisensi Creative Commons

JPtpp is licensed under Creative Commons Attribution-ShareAlike 4.0 International License