PENGARUH PENGGUNAAN BAHAN DASAR DAN
BAHAN TAMBAH PADA MINYAK PELUMAS
TERHADAP GEJALA YANG TIMBUL PADA
KENDARAAN BERMOTOR

Andoko

Abstrak: Keandalan minyak pelumas sangat tergantung oleh bahan dasar yang digunakan serta bahan tambah (aditif) yang dicampurkan. Bahan dasar yang baik dan bahan tambah yang tepat akan membuat unjuk kerja mesin menjadi baik pula. Minyak biji kapuk (seed oils) merupakan alternatif bahan dasar minyak pelumas yang diharapkan dapat menggantikan kedudukan bahan dasar minyak pelumas yang selama ini dipergunakan. Sedangkan bahan tambah SF 21 merupakan aditif yang mampu meningkatkan sistem pelumasan batas pada dua permukaan logam yang bersinggungan, yaitu pada bagian poros nok dan katup.

Kata-kata kunci: minyak pelumas, kendaraan bermotor.

Minyak pelumas merupakan suatu zat yang dipergunakan di dalam mesin kendaraan bermotor. Minyak pelumas ini berfungsi untuk melapisi dua permukaan benda yang bergerak. Gerakan yang ditimbulkan oleh bagian mesin akan menyebabkan terjadinya gesekan. Sebagai akibatnya, kedua benda yang bergesekan tersebut akan mengalami keausan, apabila di antara keduanya tidak diberikan pelumas. Suatu contoh yang dapat diberikan pada masalah di atas adalah gesekan yang terjadi antara ring piston dengan silinder, gesekan antara poros (shaft) dengan bantalan (bearing), dan lain sebagainya. Gesekan yang terjadi terjadi pada bantalan (bearing) dibedakan

Andoko adalah dosen Jurusan Pendidikan Teknik Mesin FPTK IKIP MALANG

Selain minyak pelumas harus dapat melumasi dua bagian yang bersinggungan, terdapat fungsi lain dari minyak tersebut, yaitu harus mampu mendinginkan bagian yang bergesekan, mengurangi (meredam) kejutan, dan pembersih bagian-bagian yang dilumasi (Suyanto, 1989). Hal serupa juga dipertegas oleh Wiromartono (1990:41): "Penggunaan minyak pelumas dimaksudkan untuk mengurangi sekecil mungkin keausan dari bagian benda yang bergesekan, mengurangi panas akibat gesekan, serta mencegah pengaratan pada mesin."

BAHAN DASAR MINYAK PELUMAS

Pupung (1988), melakukan pengujian terhadap dua jenis bahan dasar biji kapuk yaitu biji kapuk kasar dan biji kapuk murni. Pengujian yang
dilakukan terhadap kedua biji kapuk tersebut meliputi: pengujian mutu minyak pelumas, pengujian sifat kimia dan fisika, serta pengamatan minyak biji kapuk yang dicampur dengan bensin premium. Dari ketiga pengujian yang dilakukan, hasilnya dibandingkan dengan bahan dasar minyak pelumas yang diperoleh dari proses pengolahan minyak bumi.

Berdasarkan hasil analisis yang dilakukan terhadap mutu minyak biji kapuk dilaporkan, bahwa minyak biji kapuk (kapuk seeds oil) yang digunakan telah memenuhi standart mutu yang ditetapkan. Pengujian terhadap sifat kimia dan fisika diperoleh hasil sangat menggembirakan. Pengujian kedua sifat tersebut (kimia dan fisika) meliputi titik ruang, titik nyala, warna, bilangan asam total, kandungan abu, dan viskositas (kekentalan). Tentang viskositas dilaporkan bahwa kekentalan yang diperoleh dari minyak biji kapuk nilainya sama dengan standard Society Automotive Engineering (SAE 30) yang diperoleh dari hasil pengolahan minyak bumi. Menurut buku petunjuk yang dikeluarkan oleh Pertamina, minyak pelumas dengan kode SAE 30, 40, 50, adalah untuk jenis kendaraan jarak jauh yang setiap kali harus berhenti dan berjalan (stop and go service), terutama untuk armada kendaraan campuran (mesin bensin dan mesin diesel).

Wiromartono (1990) melakukan pengamatan tentang campuran minyak biji kapuk dengan bensin premium konsentrasi 2%, 5%, 10%, 15%, dan 20% volume minyak biji kapuk. Campuran tersebut disimpan dalam suatu ruangan yang bersuhu antara 23 sampai 29°C. Dari hasil pengamatan dilaporkan, bahwa pada suhu yang bervariasi campuran minyak biji kapuk dengan bensin premium tetap homogen selama 60 hari pengamatan. Dengan demikian, minyak biji kapuk juga sempurnai kemungkinan sebagai bahan minyak pelumas motor bensin dua langkah.

Penelitian lain tentang penggunaan minyak biji kapuk dilakukan Widodo (1990). Tujuan penelitian yang dilakukan adalah untuk mengetahui kemampuan minyak biji kapuk dalam menghasilkan energi mekanis melalui proses pembakaran, serta mengukur tingkat kehitaman gas buang yang ditimbulkan. Dalam pengujian tersebut digunakan motor diesel dengan injeksi langsung yang bersilinder tunggal, serta pendinginan air. Pada awal pengujian dilakukan analisis tentang kemampuan dan kehitaman warna gas buang dengan menggunakan bahan bakar solar (HSD) murni. Kemudian percobaan dilanjutkan, tetapi dengan menggunakan bahan bakar campuran
antara minyak biji kapuk dengan solar. Penambahan minyak biji kapuk pada bahan bakar solar terus ditambah, sehingga pada akhirnya mencapai bahan bakar yang 100% minyak biji kapuk. Dari hasil pengujian tersebut akan dibandingkan kemampuannya, yaitu antara minyak biji kapuk dengan minyak solar yang selama ini digunakan pada motor diesel. Hasil pengujian menunjukkan bahwa motor diesel dapat berfungsi secara normal meskipun bahan bakarnya diganti 100% dengan minyak biji kapuk. Kelebihan lain yang terungkap adalah motor mudah dihidupkan (distart). Sedangkan tingkat kehitaman gas buang yang dihasilkan, serta aroma gas buang yang dikeluarkan relatif harum dan tidak menyengat. Yang tidak kalah menariknya adalah konsumsi bahan bakarnya, daya, serta efisiensi totalnya mempunyai harga yang lebih baik untuk putaran antara 1200 sampai 1300 putaran/menit.

BAHAN TAMBAH (ADITIF) MINYAK PELUMAS

Jenis aditif selain disebutkan di atas masih terdapat aditif lainnya, yaitu depersen, anti oksidan, pelindung korosi, dan penekanan titik tuang Penambahan aditif ke dalam minyak pelumas dimaksudkan untuk mendmentakan mutu minyak pelumas yang sesuai dengan kebutuhan dan optimum dalam pemakaian. Hal tersebut hanya dapat dicapai jika dipenuhi syarat-syarat yang telah ditentukan. Syarat yang dimaksud di antaranya aditif harus dapat larut dalam minyak pelumas, tidak mempunyai bau yang merangsang, tidak saling merusak, dan stabil dalam waktu yang lama. Hal tersebut dipertegas oleh Pangarso (1990:43): "Aditif minyak pelumas harus dapat larut ke dalam minyak pelumas dasar (base oil), stabil digunakan untuk kurun waktu yang lama, tidak mempunyai bau yang merangsang, dapat bercampur dan tidak saling merusak."

Pada percobaan tersebut penekanan pelumasannya difokuskan pada bagian katup dan poros nok, serta sekitar ruang bakar. Tidak seperti pelumas yang biasa dilakukan, bahwa pelumasan lebih banyak difokuskan pada proses dan bantalan (bearing), ring piston dan silindernya dan lain sebagainya. Alasannya difokuskan pada bagian katup dan poros nok menurut pakar di atas adalah, bahwa berputarnya mesin mengakibatkan berputarnya poros bubungan, dan berputarnya poros bubungan menyebabkan nok (bubungan) bertumbukan dengan pengangkat katup. Makin tinggi putaran mesin, maka makin berat terjadinya benturan. Oleh karena itu, permukaan antara bubungan dengan pengangkat katup diperlukan bahan tambah (aditif) SF 21 yang mampu melayani tugas tersebut.

Sistem pelumas yang dikembangkan pada percobaan di atas disebut dengan sistem pelumasan batas. Sistem pelumasan tersebut dimaksudkan untuk menghindari (mengatasi) gesekan dari permukaan logam yang bersentuhan. Untuk mengatasi kondisi yang demikian, maka minyak pelumas harus mampu bereaksi dengan permukaan logam, agar dapat membentuk suatu lapisan. Dari lapisan yang terbentuk, diharapkan dapat memberi batas atau melindungi permukaan logam dari benturan (gesekan) antara logam dengan logam. Lapisan yang terbentuk oleh minyak pelumas bersikap sebagai pegas, sehingga benturan yang terjadi antara permukaan logam merupakan benturan lenting elastis (benturan elastis sempurna).

Pengujian dilakukan dengan cara mencampurkan aditif SF 21 dalam beberapa prosen ke dalam minyak pelumas SAE 20 W 50. Campuran berkisar antara 5% sampai 15%. Dari hasil pengujian dilaporkan, bahwa
weld point pelumas SAE 20 W 50 tanpa aditif SF 21 adalah 200 kg. Setelah ditambah 5% SF 21 weld point naik menjadi 250 kg, dan terus menanjak menjadi 300 kg lebih pada penambahan 10% sampai 15% SF 21. Dengan demikian, selisih beban untuk terjadinya weld point antara pelumas yang ditambah aditif SF 21 dan tidak adalah 100 kg. Dengan demikian lapisan permukaan tersebut dapat menambah gaya lenturan pada beban yang lebih berat, yaitu 100 kg lebih berat. Hal tersebut dapat diperlihatkan pada tabel di bawah ini:

<table>
<thead>
<tr>
<th>Keterangan</th>
<th>SAE 20W 50</th>
<th>SF 21</th>
<th>SF 21</th>
<th>SF 21</th>
<th>SF 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load wear index</td>
<td>93,78</td>
<td>71,76</td>
<td>75,32</td>
<td>117,94</td>
<td>95,01</td>
</tr>
<tr>
<td>Welding point (kg)</td>
<td>200</td>
<td>250</td>
<td>250</td>
<td>315</td>
<td>315</td>
</tr>
</tbody>
</table>

Sumber: Wartawan(1988:89)

KESIMPULAN

Dari hasil tulisan di atas dapat ditarik beberapa kesimpulan yaitu Pertama bahan dasar minyak pelumas yang berasal dari minyak biji kapuk khususnya minyak biji kapuk murni, menunjukkan potensi yang sangat besar untuk dijadikan bahan dasar minyak pelumas. Kedua minyak biji kapuk dapat dicampurkan dengan bensin premium pada berbagai komposisi. Dengan demikian, maka minyak biji kapuk memiliki kemungkinan untuk digunakan sebagai bahan dasar minyak pelumas motor bensin dua langkah. Ketiga penambahan aditif SF 21 pada minyak pelumas akan memberikan kenaikan weld point sebesar 100 kg. Artinya, bahwa aditif SF 21 yang mengandung Molibdinum Disolfida mampu memberikan lapisan pada permukaan logam yang dilumasi. Lapisan permukaan tersebut dapat menambah daya tahan terhadap gaya benturan pada beban 100 kg lebih besar.
DAFTAR PUSTAKA

