RESOURCES SISWA SMA TENTANG KONSEP GAYA APUNG MELALUI CLOSED-ENDED BERALASAN

Maria Chandra Sutarja, Sutopo Sutopo, Eny Latifah

Abstract


Students’ initial ideas are usually naïve. Information about students’ initial ideas are urgen, because students’ conceptual understanding could be reached if they had scientific ideas. Inappropriate resource caused the presence of students’ naïve ideas. Based on that, students’ resource on buoyant force were identified. Mixed method was used as study design. Closed-ended with reason was used as study instrument on XIth grade students one of high school at Lamongan. Six ideas about buoyant force were found. Five of six ideas came from resource “the more effort, the greater result”, and one of them came from fluid pressure idea.

Ide awal siswa seringkali bersifat naïve. Informasi tentang ide awal siswa bersifat urgen, karena penguasaan konsep siswa tercapai jika siswa memiliki ide ilmiah. Resource yang tidak tepat menyebabkan munculnya ide naïve siswa. Berdasarkan permasalahan tersebut, telah dilakukan identifikasi resource siswa tentang konsep gaya apung. Metode berupa mixed method dengan instrumen penelitian berupa closed-ended beralasan digunakan dalam penelitian pada siswa kelas XI salah satu SMA Negeri di Lamongan. Diperoleh enam bentuk ide naïve terkait gaya apung. Lima dari enam bentuk ide berasal dari resource berupa “semakin besar usaha, semakin besar hasil yang diperoleh”, sedangkan satu lainnya berasal dari konsep tekanan.


Keywords


resources; ide naïve; closed-ended; gaya apung

Full Text:

PDF

References


Besson, U. 2004. Students' Conceptions of Fluids. International Journal of Science Education, 26 (14):1683—1714.

Carey, S. 2000. Science Education as Conceptual Change. Journal of Applied Developmental Psychology, 21 (1):13—19.

Clement, J. 1982. Students’ Preconceptions in Introductory Mechanics. American Journal of Physics, 50 (1):66—71.

Creswell, J.W. & Clark, V. L. P. 2007. Designing and Conducting Mixed Methods Research. Thousand Oaks, California: Sage Publications.

diSessa, A. A. 1993. Toward an epistemology of physics. Cognition and instruction, 10 (2-3):105—225.

diSessa, A. A. 2008. A bird's-eye view of the" pieces" vs" coherence" controversy (from the" pieces" side of the fence"). In International handbook of research on conceptual change (pp. 35—60).

diSessa, A. 2015. Alternative Conceptions and P-Prims. Encyclopedia of Science Education, 34—37.

Docktor, J. L., & Mestre, J. P. 2014. Synthesis of discipline-based education research in physics. Physical Review Special Topics-Physics Education Research, 10(2), 020119.

Gang, S. 1995. Removing Preconceptions with a ‘‘Learning Cycle’’. The Physics Teacher, 33 (6):346—354.

Hammer, D. 1996. Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions. The Journal of the Learning Sciences, 5 (2):97—127.

Hammer, D. 2000. Student resources for learning introductory physics. American Journal of Physics, 68(S1), S52-S59.

Khasanah, N., Wartono., & Lia Yuliati. 2016. Analysis of Mental Model of Students Using Isomorphic Problems in Dynamics of Rotational Motion Topic. Jurnal Pendidikan IPA Indonesia, 5(2).

McCloskey, M., Washburn, A., & Felch, L. 1983. Intuitive physics: The straight-down belief and its origin. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9 (4):636.

McCloskey, M., & Kohl, D. 1983. Naive physics: the curvilinear impetus principle and its role in interactions with moving objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9 (1):146.

McDermott, L. C. 1984. Research on conceptual understanding in mechanics. Physics Today, 37 (7):24—32.

Minogue, J., & Borland, D. 2016. Investigating students’ ideas about buoyancy and the influence of haptic feedback. Journal of Science Education and Technology, 25 (2):187—202.

Mullet, E. 1988. Archimedes' Effect, Information Integration and Individual Differences. International Journal of Science Education, 10 (3):285—301.

Osborne, R. J., & Gilbert, J. K. 1980. A Technique for Exploring Students' Views of the World. Physics Education, 15 (6):376.

Peşman, H., & Eryılmaz, A. 2010. Development of a three-tier test to assess misconceptions about simple electric circuits. The Journal of educational research, 103 (3):208—222.

Rabin, G. 2011. Conceptual mastery and the knowledge argument. Philosophical Studies 154:125—147.

Reja, U., Manfreda, K. L., Hlebec, V., & Vehovar, V. 2003. Open-ended vs. close-ended questions in web questionnaires. Developments in applied statistics, 19 (1):160—117.

Singh, C. 2008. Assessing student expertise in introductory physics with isomorphic problems. II. Effect of some potential factors on problem solving and transfer. Physical Review Special Topics-Physics Education Research, 4(1), 010105.

Solehudin. 2016. Pengembangan FDT (Fluid Diagnostic Test) Berbentuk Isomorfik sebagai Instrumen Diagnostik Miskonsepsi pada Materi Fluida. Skripsi tidak diterbitkan. Malang: Universitas Negeri Malang

Soyibo, K. 1993. Some sources of student’s misconceptions in biology: A review. In Third Misconceptions Seminar Proceedings. The Proceedings of the Third International Seminar on Misconceptions Educational Strategies in Science and Mathematics. Publisher Location: Ithaca, NY.

Stover, S., & Saunders, G. 2000. Astronomical misconceptions and the effectiveness of science museums in promoting conceptual change. Journal of Elementary Science Education, 12 (1):41—51.

Sutarja, M. C., Sutopo., & Eny Latifah. 2016. Identifikasi Kesulitan Ide Konsep Siswa pada Fluida Statis. Dalam Prosiding Seminar Nasional Pendidikan IPA 2016.

Sutopo & Waldrip, B. 2014. Impact of multiple-representations approach on students’ reasoning, generic science skills, and conceptual understanding on Mechanics. International Journal of Science and Mathematics Education, 12, 741-765.

Tsui, C. Y., & Treagust, D. 2010. Evaluating secondary students’ scientific reasoning in genetics using a two‐tier diagnostic instrument. International Journal of Science Education, 32 (8):1073—1098.

van Zee, E. H., Hammer, D., Bell, M., Roy, P., & Peter, J. 2005. Learning and teaching science as inquiry: A case study of elementary school teachers' investigations of light. Science Education, 89 (6):1007—1042.

Wells, M., Hestenes, D., & Swackhamer, G. 1995. A Modeling Method for High School Physics Instruction. American Journal of Physics, 63 (7):606—619.

Wijaya, C. P., & Muhardjito, M. 2016. The Diagnosis of Senior High School Class X MIA B Students Misconceptions About Hydrostatic Pressure Concept Using Three-Tier. Jurnal Pendidikan IPA Indonesia, 5 (1):13—21.

Yin, Y., Tomita, M. K., & Shavelson, R. J. 2008. Diagnosing and Dealing with Student Misconceptions: Floating and Sinking. Science scope, 31 (8):34—39.




DOI: http://dx.doi.org/10.17977/jptpp.v2i10.10063

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Maria Chandra Sutarja, Sutopo Sutopo, Eny Latifah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JPtpp is accredited “Rank 3” as a scientific journal under the decree of the Directorate General of Research Enhancement and Development, Ministry of Research, Technology, and Higher Education, dated December 7, 2022, No: 225/E/KPT/2022, effective for five years from Volume 7 Issue 8, 2022 until Volume 12 Issue 7, 2027. Link to download


Jurnal Pendidikan: Teori, Penelitian, & Pengembangan

Journal of Education: Theory, Research, and Development

Graduate School Of Universitas Negeri Malang

Lisensi Creative Commons

JPtpp is licensed under Creative Commons Attribution-ShareAlike 4.0 International License