Konsistensi Representasi Tingkat Dasar Besaran Fisis Materi Kinematika

Fathoroni Fathoroni, Markus Diantoro, Parno Parno

Abstract


Abstract: In the world of physics education, there are still many inconsistency in the representation of physical quantities in daily delivery, both in written and oral. But not many researches are really focused on the issue, so that research is done to understand the consistency of the basic level of physical scale and its representation on the kinematics. The research has been done by mixed method method of embedded correlational design model. The study participants amounted to 20 students in the 3rd semester who have passed the basic physics courses 1. The data were collected using physical consistency knowledge consistency test and its representation, consisting of seven questions with chain answers. Quantitative data analysis used descriptive analysis and qualitative data analysis used data reduction and interpretation. The result of data analysis shows that consistency of knowledge base level representation of physical quantity consisting of consistency of basic knowledge and consistency of basic use physical quantity and its representation still low. The result of the data analysis shows the consistency of knowledge of physical quantity and the use of represetation of physical quantity, all students are at level 5 / KRLV5 (low consistency level 5).

Abstrak: Dalam dunia pendidikan fisika masih banyak ditemukan ketidakkonsistenan representasi besaran fisis dalam penyampainnya sehari-hari, baik secara tertulis maupun lisan. Namun, belum banyak penelitian yang benar-benar fokus membahas isu tersebut sehingga penelitian dilakukan untuk memahami pola konsistensi besaran fisis tingkat dasar dan representasinya pada materi kinematika pada mahasiswa. Penelitian telah dilakukan dengan metode mixed method model embedded correlational design. Partisipan penelitian berjumlah 20 mahasiswa semester III yang telah lulus matakuliah fisika dasar. Data dikumpulkan menggunakan instrumen tes konsistensi pengetahuan besaran fisis dan representasinya yang terdiri dari tujuh soal uraian berantai. Analisis kuantitatif menggunakan analisis deskriptif dan analisis kualitatif menggunakan reduksi dan interpretasi data. Hasil analisis data menunjukkan konsistensi pengetahuan tingkat dasar representasi besaran fisis yang terdiri dari konsistensi pengetahuan dasar dan konsistensi penggunaan dasar besaran fisis dan representasinya masih rendah. Hasil analisis data mengindikasikan bahwa tingkat pengetahuan dan penggunaan representasi besaran fisis seluruh mahasiswa berada pada level 5/KRLV5 (konsistensi rendah level 5).

Keywords


consistency; representation; physical quantity; kinematics; konsistensi; representasi; besaran fisis; kinematika

Full Text:

PDF

References


Akbar, M. (2014). Pengembangan Tes Isomorfik Berbasis Computer untuk Diagnostic Miskonsepsi Diri pada Materi Gaya dan Hukum Newton. Tesis tidak diterbitkan. Universitas Negeri Malang, Malang.

Brookes, T., David. (2007). Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning. Physical Review Special Topics - Physics Education Research, 010105 (2007).

Cohen, E., Richard., & Giacomo, P. (2010). Symbols, Units, Nomenclature and Fundamental Constants in Physics. Netherlands: Physica 146A.

Cohen, Richard, C., & Giacomo, P. (2010). Symbols, Units, Nomenclature and Fundamental Constants in Physics. Sunamco: International Union of Pure and Applied Physics Commission C2.

Flores, S., Kanim, E., & Sergio. (2003). Students Use of Vectors in Introductory Mechanics. American Journal of Physics, 72(4), 460—468. https://doi.org/10.1119/1.1648686

Govender, N. (2013). Physics student teachers' mix of understandings of algebraic sign convention in vector-kinematics: A Phenomenographic Perspective. African Journal of Research in Mathematics, Science and Technology Education, 11(1), 61—73. https://doi.org/10.1080/10288457.2007.10740612

Hage, J. (2010). Consistency of Rules and Norms. Information & Communications Technology Law, 9(3), 219—240.

Handika, J., Cari, C. A., Suparmi., & Sunarno, W. (2017). The influence of intuition and communication language in generating student conceptions. International Conference on Science and Applied Science, 909(2017), 1—8. doi :10.1088/1742-6596/909/1/012050

Huda, M. N. (2014). Dampak Authentic Problem melalui Integrative Learning terhadap Perubahan Konseptual dan Kerja Ilmiah

Fisika Siswa SMA pada Topik Gerak Lurus. Tesis tidak diterbitkan. Universitas Negeri Malang, Malang.

Keller, A., Brian, & Hirsch, R., Christian. (2006). Student preferences for representations of functions. International Journal of Mathematical Education in Science and Technology, 29(1), 1—17. https://doi.org/10.1080/0020739980290101

Kozma, R., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34, 949—968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949:AID-TEA7>3.0.CO;2-UCi

Majidi, S., & Emdem, M. (2013). Conceptualizations of representation forms and knowledge organization of high school teachers in Finland: “magnetostatics”. European Journal of Science and Mathematics Education, 1(2), 69—83.

Nguyen, Ngoc-Loan, & Meltzer, E., David. (2003). Initial Understanding of Vector Concepts Among Students in Introducory Physics Courses. American Journal of Physics, 71(6), 630—638. https://doi.org/10.1119/1.1571831

Nurachmandani, S. (2009). Fisika 1: Untuk SMA/MA Kelas X. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.

Putra, I. A. (2014). Pengembangan Model Hybrid Learning untuk Meningkatkan Penguasaan Konsep Siswa Kelas X SMA pada Materi Kinematika Gerak Lurus. Tesis tidak diterbitkan. Universitas Negeri Malang, Malang.

Sherin, L. B. (2001). How Students Understand Physics Equations. Cognition and Instruction, 19(4), 479—541.

Sinaga, P., Suhandi, A., & Liliasari. (2014). The Effectiveness of Learning to Represent Physics Concept Approach: Preparing Pre-Service Physics Teachers to be Good Teachers. IMPACT: International Journal of Research in Applied, Natural and Social Sciences, 2(4), 127—136.

Stieff, M., Hegarty, M., & Deslongchamps, G. (2011). Identifying Representational Competence with Multi-Representational Displays. Cognition and Instruction, 29(1), 123—145.

Suganda, A., Rustiawan, Dede., K., & Saripudin, A. (2009). Praktis Belajar Fisika 1: Untuk Kelas X SMA. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.

Sumarsono, J. (2009). Fisika: Untuk SMA/MA Kelas X. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.

Thompson, Ambler & Taylor, Barry N. (2008). Guide for the Use of the International System of Units (SI). Gaithersburg: National Institute of Standards and Technology.

Wutchana, U., & Emarat, N. (2011). Students’ Understanding of Graphical Vector Addition in One and Two Dimensions. Eurasian Journal of Physics and Chemistry Education, 3(2), 102—111.




DOI: http://dx.doi.org/10.17977/jptpp.v3i12.12556

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Fathoroni Fathoroni, Markus Diantoro, Parno Parno

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JPtpp is accredited “Rank 3” as a scientific journal under the decree of the Directorate General of Research Enhancement and Development, Ministry of Research, Technology, and Higher Education, dated December 7, 2022, No: 225/E/KPT/2022, effective for five years from Volume 7 Issue 8, 2022 until Volume 12 Issue 7, 2027. Link to download


Jurnal Pendidikan: Teori, Penelitian, & Pengembangan

Journal of Education: Theory, Research, and Development

Graduate School Of Universitas Negeri Malang

Lisensi Creative Commons

JPtpp is licensed under Creative Commons Attribution-ShareAlike 4.0 International License