Pemecahan Masalah menggunakan Model IDEAL pada Siswa Kelas X Berkategori Fast-Accurate

Anas Ma’ruf Annizar, Sisworo Sisworo, Sudirman Sudirman

Abstract


Abstract: This qualitative descriptive research aimed to describe problem solving of fast-accurate subject. The problem adapted from PISA and the problem solving indicator using IDEAL model. The subject begins to identify the problem by reading and understanding it in a short time, he can retell the problem with his own words. In the determining and representing stage, he doesn’t write what is known and asked completely, but actually he know it. Furthermore, he is only able to plan one strategy. In practice, he doesn’t make any calculation errors. Finally, he doesn’t looking back the calculation or the concept used.

Abstrak: Penelitian deskriptif kualitatif ini bertujuan mendeskripsikan pemecahan masalah subjek fast-accurate, yakni subjek yang tergolong cepat dan akurat. Soal tes yang digunakan diadaptasi dari soal PISA dan indikator pemecahan masalahnya menggunakan model IDEAL. Subjek mulai mengidentifikasi masalah dengan membaca dan memahami permasalahan dengan waktu yang cepat, subjek dapat menceritakan kembali permasalahan dengan bahasanya sendiri. Pada tahap menentukan dan merepresentasikan masalah subjek tidak menuliskan apa yang diketahui dan ditanyakan secara lengkap, namun sebenarnya subjek mengetahuinya. Selanjutnya, subjek hanya mampu merencanakan satu strategi. Pada pelaksanaannya, subjek tidak melakukan kesalahan perhitungan apapun. Terakhir, subjek tidak melakukan pengoreksian pada bagian perhitungan maupun konsep yang digunakan.


Keywords


problem solving; fast-accurate; IDEAL model; pemecahan masalah; fast-accurate; IDEAL model

Full Text:

PDF

References


Alacaci, C., & Dogruel, M. (2010). Solving a Stability Problem by Polya’ S Four Steps. International Journal of Electronic, Mechanical, and Mechatronics Engineering, 1(1), 19–28.

Bokar, J. (2013). Solving and Reflecting On Real-World Problems: Their Influences on Mathematical Literacy and Engagement In The Eight Mathematical Practices. Ohio University.

Brookhart, S. M. (2010). How To Assess Higher-Order Thinking Skills in Your Classroom. USA: ASCD Alexandria.

Cai, J., & Brook, M. (2006). Looking Back in Problem Solving. Mathematics Teaching Incorporating Micromath, (196), 42–45.

Das, R., & Das, G. C. (2013). Math Anxiety : The Poor Problem Solving Factor in School Mathematics. International Journal of Scientific and Research Publication, 3 (4), 1–5. http://www.ijsrp.org/research-paper-0413/ijsrp-p16134.pdf.

Ernest, P. (2015). The Social Outcomes of Learning Mathematics : Standard, Unintended or Visionary ? International Journal of Education in Mathematics, Science and Technology, 3 (3), 187-192. Retrieved from http://files.eric.ed.gov/fulltext/EJ1066357.pdf.

Kagan, J. (1966). Reflection-Impulsivity: The Generality and Dynamics of Conceptual Tempo 1. Journal of Abnormal Psychology, 71 (1), 17–24. http://dx.doi.org/10.1037/h0022886.

Kurniati, D., & Annizar, A. M. (2017). The Analysis of Students’ Cognitive Problem Solving Skill in Solving PISA Standard-Based Test Item. Advanced Science Letters, 23 (2), 1–5.

Mataka, L. M., Cobern, W. W., Megan, L., Mutambuki, J., Akom, G., Mutambuki, J., & The, G. (2014). The Effect of Using an Explicit General Problem Solving Teaching Approach on Elementary Pre-1Service Teachers’ Ability to Solve Heat Transfer Problems. International Journal of Education in Mathematics, Science, and Technology, 2 (3), 164–174. Retrieved from http://ijemst.com/issues/2_3_1_Mataka_Cobern_Grunert_Mutambuki_Akom.pdf.

OECD. (2016). Pisa 2015: Result in Focus. OECD.

Polya, G. (1973). How To Solve It: A New Aspect of Mathematical Method. Princenton, New Jersey: Princenton University Press.

Rezaei, A., Boroghani, T., & Rahimi, M. A. (2013). Reflectivity/Impulsivity as an Important Individual Factor and Effectiveness of Awareness Raising Activities. Sino-US English Teaching, 10 (4), 281–286.

Rozencwajg, P., & Corroyer, D. (2005). Cognitive Processes in the Reflective-Impulsive Cognitive Style. The Journal of Genetic Psychology, 166 (4), 451–463. https://doi.org/10.3200/GNTP.166.4.451-466.

Warli, & Fadiana, M. (2015). Math Learning Model that Accommodates Cognitive Style to Build Problem-Solving Skills. Higher Education Studies, 5 (4), 86–98. https://doi.org/10.5539/hes.v5n4p86.

Zhu, Z. (2007). Gender Differences in Mathematical Problem Solving Patterns : A Review of Literature. International Education Journal, 8 (2), 187–203. Retrieved from http://ehlt.flinders.edu.au/education/iej/main/mainframe.htm.




DOI: http://dx.doi.org/10.17977/jptpp.v3i5.11087

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Anas Ma’ruf Annizar, Sisworo Sisworo, Sudirman Sudirman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JPtpp is accredited “Rank 2” as a scientific journal under the decree of the Directorate General of Research Enhancement and Development, Ministry of Research, Technology, and Higher Education, dated October 24, 2018, No: 30/E/KPT/2018, effective for five years from Volume 3 Issue 1, 2018 until Volume 7 Issue 8, 2022.


Jurnal Pendidikan: Teori, Penelitian, & Pengembangan

Journal Of Education

Graduate School Of Universitas Negeri Malang

Lisensi Creative Commons

JPtpp is licensed under Creative Commons Attribution-ShareAlike 4.0 International License