Cover 24921

Identifying Students’ Incorrect Common-Sense Knowledge in Forces and Motion: Recommendations for Developing Computer-Based Learning Media

Ahmad Ridlotul Adha, Sutopo Sutopo, Nasikhudin Nasikhudin

Abstract


Conceptual understanding is a crucial area in physics education research, focusing on students’ comprehension of fundamental principles. Force and motion, integral topics within this field, are inherently linked to students’ daily experiences. Numerous studies have identified the persistence of common sense knowledge among students. This research presents a literature review aimed at identifying such consistently held misconceptions. We analyzed 17 papers sourced from Publish or Perish 8, Google Scholar, and Scopus. Our analysis revealed that the concepts of impetus and active force are the most persistent forms of common sense knowledge, influenced by real-life experiences. Additionally, students’ difficulties with kinematics tend to diminish over time. With advancements in technology and educational methodologies, it is anticipated that these incorrect common sense understandings can be progressively reduced and eventually eliminated.

DOI: 10.17977/jps.v11i42023p123


Keywords


force and motion; literature review; common sense knowledge; impetus; active force

Full Text:

PDF

References


Adha, A. R., Nasikhuddin, N., & Sutopo, S. (2023, August). Exploring student’s misconception in force and motion using the FCI. In F. Huriawati et al. (Eds.), Cybergogi dan masa depan pendidikan fisika di Indonesia. Proceedings of the SNPF (Seminar Nasional Pendidikan Fisika) IX 2023. Retrieved from https://prosiding.unipma.ac.id/index.php/SNPF/article/view/3950

Affriyenni, Y., Susanti, N. E., & Swalaganata, G. (2020, April). The effect of hybrid-learning on students’ conceptual understanding of electricity in short-term fundamental physics course. In AIP Conference Proceedings (Vol. 2215, No. 1, p. 040001). AIP Publishing. https://doi.org/10.1063/5.0000508

Al-Rsa’i, M. S., Khoshman, J. M., & Tayeh, K. A. (2020). Jordanian pre-service physics teacher’s misconceptions about force and motion. Journal of Turkish Science Education, 17(4), 528–543. https://doi.org/10.36681/tused.2020.43

Bani-Salameh, H. N. (2016a). How persistent are the misconceptions about force and motion held by college students?. Physics Education, 52(1), 014003. https://doi.org/10.1088/1361-6552/52/1/014003

Bani-Salameh, H. N. (2016b). Using the method of dominant incorrect answers with the FCI test to diagnose misconceptions held by first year college students. Physics Education, 52(1), 015006. https://doi.org/10.1088/1361-6552/52/1/015006

Bani-Salameh, H., Nuseirat, M., & Alkofahi, K. A. (2017). Do first year college female and male students hold different misconceptions about force and motion. IOSR Journal of Applied Physics, 9(2), 14–18. https://doi.org/10.9790/4861-0902021418

Bayraktar, S. (2009). Misconceptions of Turkish pre-service teachers about force and motion. International Journal of Science and Mathematics Education, 7, 273–291. https://doi.org/10.1007/s10763-007-9120-9

Bogdanov, S., & Viiri, J. (1999, August). Students’ understanding of the force concept in Russia and Finland. In Proceedings of the 2nd International Conference of the European Science Education Research Association (ESERA), Kiel. Retrieved from https://archiv.leibniz-ipn.de/projekte/esera/book/b111-bog.pdf

Brewe, E., Bruun, J., & Bearden, I. G. (2016). Using module analysis for multiple choice responses: A new method applied to Force Concept Inventory data. Physical Review Physics Education Research, 12(2), 020131. https://doi.org/10.1103/PhysRevPhysEducRes.12.020131

Cahyadi, V. (2004). The effect of interactive engagement teaching on student understanding of introductory physics at the faculty of engineering, University of Surabaya, Indonesia. Higher Education Research & Development, 23(4), 455–464. https://doi.org/10.1080/0729436042000276468

Cashman, A., & O’Mahony, T. (2022). Student understanding of kinematics: A qualitative assessment. European Journal of Engineering Education, 47(6), 886–909. https://doi.org/10.1080/03043797.2022.2073200

Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics, 50(1), 66–71. https://doi.org/10.1119/1.12989

Diyana, T. N., Sutopo, S., & Sunaryono, S. (2020). The effectiveness of web-based recitation program on improving students’ conceptual understanding in fluid mechanics. Jurnal Pendidikan IPA Indonesia, 9(2), 219–230. https://doi.org/10.15294/jpii.v9i2.24043

Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics-Physics Education Research, 10(2), 020119. https://doi.org/10.1103/PhysRevSTPER.10.020119

Fadllan, A. (2011). Model pembelajaran konflik kognitif untuk mengatasi miskonsepsi pada mahasiswa tadris fisika program kualifikasi S. 1 Guru Madrasah. Phenomenon: Jurnal Pendidikan MIPA, 2(1), 139–159. https://doi.org/10.21580/phen.2011.1.2.441

Fazio, C., & Battaglia, O. R. (2019). Conceptual understanding of Newtonian mechanics through cluster analysis of FCI student answers. International Journal of Science and Mathematics Education, 17, 1497–1517. https://doi.org/10.1007/s10763-018-09944-1

Gilbert, J. K., & Zylbersztajn, A. (1985). A conceptual framework for science education: The case study of force and movement. The European Journal of Science Education, 7(2), 107–120. https://doi.org/10.1080/0140528850070201

Hadjiachilleos, S., Valanides, N., & Angeli, C. (2013). The impact of cognitive and affective aspects of cognitive conflict on learners’ conceptual change about floating and sinking. Research in Science & Technological Education, 31(2), 133–152. https://doi.org/10.1080/02635143.2013.811074

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809

Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions. The journal of the learning sciences, 5(2), 97–127. https://doi.org/10.1207/s15327809jls0502_1

Han, J., Bao, L., Chen, L., Cai, T., Pi, Y., Zhou, S., ... & Koenig, K. (2015). Dividing the Force Concept Inventory into two equivalent half-length tests. Physical Review Special Topics-Physics Education Research, 11(1), 010112. https://doi.org/10.1103/PhysRevSTPER.11.010112

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–158. https://doi.org/10.1119/1.2343497

Kattayat, S., & Josey, S. (2019, March). Improving students conceptual understanding of calculus based physics using Problem Based Learning approach on an e-learning platform applied to engineering education. In 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1–6). IEEE. https://doi.org/10.1109/ICASET.2019.8714298

Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11(4–5), 357–380. https://doi.org/10.1016/S0959-4752(00)00037-2

Linn, M. C. (2006). The knowledge integration perspective on learning and instruction. In R. K. Sawyer (Ed.), The Cambridge handbook of: The learning sciences (pp. 243–264). Cambridge, UK: Cambridge University Press.

Luangrath, P., Pettersson, S., & Benckert, S. (2011). On the use of two versions of the force concept inventory to test conceptual understanding of mechanics in Lao PDR. Eurasia Journal of Mathematics, Science and Technology Education, 7(2), 103–114. https://doi.org/10.12973/ejmste/75184

Martin-Blas, T., Seidel, L., & Serrano-Fernández, A. (2010). Enhancing Force Concept Inventory diagnostics to identify dominant misconceptions in first-year engineering physics. European Journal of Engineering Education, 35(6), 597–606. https://doi.org/10.1080/03043797.2010.497552

McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 37(7), 24–32. https://doi.org/10.1063/1.2916318

Morris, G. A., Harshman, N., Branum-Martin, L., Mazur, E., Mzoughi, T., & Baker, S. D. (2012). An item response curves analysis of the Force Concept Inventory. American Journal of Physics, 80(9), 825–831. https://doi.org/10.1119/1.4731618

Munfaridah, N., Avraamidou, L., & Goedhart, M. (2021). The use of multiple representations in undergraduate physics education: what do we know and where do we go from here?. Eurasia Journal of Mathematics, Science and Technology Education, 17(1), em1934. https://doi.org/10.29333/ejmste/9577

Pertiwi, C. A., & Setyarsih, W. (2015). Konsepsi siswa tentang pengaruh gaya pada gerak benda menggunakan instrumen force concept inventory (FCI) termodifikasi. Jurnal Inovasi Pendidikan Fisika (JIPF), 4(2), 162–168.

Poutot, G., & Blandin, B. (2015). Exploration of students’ misconceptions in mechanics using the FCI. American Journal of Educational Research, 3(2), 116–120. https://doi.org/10.12691/education-3-2-2

Rebello, N. S., & Zollman, D. A. (2004). The effect of distracters on student performance on the force concept inventory. American Journal of Physics, 72(1), 116–125. https://doi.org/10.1119/1.1629091

Sadanand, N., & Kess, J. (1990). Concepts in Force and Motion. Physics Teacher, 28(8), 530–533. https://doi.org/10.1119/1.2343138

Savinainen, A., & Scott, P. (2002). The Force Concept Inventory: A tool for monitoring student learning. Physics Education, 37(1), 45. https://doi.org/10.1088/0031-9120/37/1/306

Scott, T. F., & Schumayer, D. (2017). Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data. Physical Review Physics Education Research, 13(1), 010126. https://doi.org/10.1103/PhysRevPhysEducRes.13.010126

Scott, T. F., & Schumayer, D. (2018). Central distractors in force concept inventory data. Physical Review Physics Education Research, 14(1), 010106. https://doi.org/10.1103/PhysRevPhysEducRes.14.010106

Scott, T. F., & Schumayer, D. (2021, February). Network analysis of misconceptions in FCI data. In AIP Conference Proceedings (Vol. 2319, No. 1, p. 110001). AIP Publishing. https://doi.org/10.1063/5.0037733

Stoen, S. M., McDaniel, M. A., Frey, R. F., Hynes, K. M., & Cahill, M. J. (2020). Force Concept Inventory: More than just conceptual understanding. Physical Review Physics Education Research, 16(1), 010105. https://doi.org/10.1103/PhysRevPhysEducRes.16.010105

Suprapto, N., Syahrul, D. A., Agustihana, S., Pertiwi, C. A., & Ku, C. H. (2016). College students’conceptions of Newtonian mechanics: A case of Surabaya State University Indonesia. Chemistry: Bulgarian Journal of Science Education, 25(5), 718–731.

Sutopo, S. (2021). Memfasilitasi siswa memahami fisika secara bermakna dan koheren: Tantangan dan alternatifnya. In N. F. Choiron et al. (Eds.), Kumpulan pidato pengukuhan guru besar Universitas Negeri Malang (UM) (pp. 201–216). Malang, Indonesia: Penerbit Universitas Negeri Malang.

Sutopo, S., Hidayah, N., Wisodo, H., & Haryoto, D. (2020, April). Improving students’ understanding of kinematics concepts through multi-representational learning. In AIP Conference Proceedings (Vol. 2215, No. 1). AIP Publishing. https://doi.org/10.1063/5.0004063

Sutopo, S., Jayanti, I. B. R., & Wartono, W. (2017). Efektivitas program resitasi berbasis komputer untuk meningkatkan penguasaan konsep mahasiswa tentang gaya dan gerak. Jurnal Inovasi dan Pembelajaran Fisika, 4(1), 27–35. https://doi.org/10.36706/jipf.v4i1.4260

Tawil, M., & Said, M. A. (2022). Understanding the Newton’s motion concept through qualitative and quantitative teaching. JPPPF (Jurnal Penelitian dan Pengembangan Pendidikan Fisika, 8(1), 135–154. https://doi.org/10.21009/1.08113

Trumper, R., & Gorsky, P. (1996). A cross-college age study about physics students’ conceptions of force in pre-service training for high school teachers. Physics Education, 31(4), 227–236. https://doi.org/10.1088/0031-9120/31/4/021

Viiri, J. (1996). Teaching the force concept: a constructivist teaching experiment in engineering education. European Journal of Engineering Education, 21(1), 55–63. https://doi.org/10.1080/03043799608923388

Wells, J., Henderson, R., Stewart, J., Stewart, G., Yang, J., & Traxler, A. (2019). Exploring the structure of misconceptions in the Force Concept Inventory with modified module analysis. Physical Review Physics Education Research, 15(2), 020122. https://doi.org/10.1103/PhysRevPhysEducRes.15.020122

Yasuda, J. I., Hull, M. M., & Mae, N. (2023). Visualizing depth of student conceptual understanding using subquestions and alluvial diagrams. Physical Review Physics Education Research, 19(2), 020121. https://doi.org/10.1103/physrevphyseducres.19.020121

Yasuda, J. I., Mae, N., Hull, M. M., & Taniguchi, M. A. (2018). Analyzing false positives of four questions in the Force Concept Inventory. Physical Review Physics Education Research, 14(1), 010112. https://doi.org/10.1103/PhysRevPhysEducRes.14.010112





Jurnal Pendidikan Sains

Journal of Science Education

Graduate School of Universitas Negeri Malang, Indonesia

Lisensi Creative Commons

JPS is licensed under Creative Commons Attribution-ShareAlike 4.0 International License